RNA recombination between persisting pestivirus and a vaccine strain: generation of cytopathogenic virus and induction of lethal disease.
نویسندگان
چکیده
Molecular analysis of a cytopathogenic (cp) bovine viral diarrhea virus (BVDV) isolate (1741) obtained from a case of mucosal disease (MD) led to the identification of five different viral subgenomic RNAs in addition to a noncytopathogenic (noncp) strain (NCP 1741). For each of the subgenomes, a large internal deletion was found together with an inserted sequence encoding part of ribosomal protein S27a fused to an N-terminally truncated ubiquitin monomer. Surprisingly, the two cellular insertions together with flanking viral sequences encoding parts of NS3 and NS4B are >99% identical to the previously described sequence of BVDV vaccine strain RIT (P. Becher, M. Orlich, and H.-J. Thiel, J. Virol. 72:8697-8704, 1998), while the remainder of the subgenomes is derived from the genome of NCP 1741. Further analyses including molecular cloning and nucleotide sequencing of the recombination partners revealed that both homologous and nonhomologous RNA recombination contributed to the generation of the viral subgenomes. Interestingly, for another cp BVDV isolate (CP 4584) from an independent case of MD, again an insertion of a RIT-derived sequence element was detected. In contrast to CP 1741, for CP 4584 a duplication of the genomic region encoding NS3 and parts of NS4A and NS4B was found. Transfection of bovine cells with RNA transcribed from a chimeric cDNA construct showed that the RIT-derived insertion together with the CP 4584-specific duplication of viral sequences represents the genetic basis of cytopathogenicity of CP 4584. Remarkably, passages of the recovered cp virus in cell culture led to emergence of noncp BVDV and a number of viral subgenomes whose genome organization was similar to that in BVDV 1741.
منابع مشابه
Insertion of a sequence encoding light chain 3 of microtubule-associated proteins 1A and 1B in a pestivirus genome: connection with virus cytopathogenicity and induction of lethal disease in cattle.
Pestiviruses represent the first RNA viruses for which recombination with cellular protein-coding sequences has been reported. As a result of such recombinations cytopathogenic (cp) pestiviruses can develop from noncytopathogenic (noncp) viruses. In the case of bovine viral diarrhea virus (BVDV), the generation of cp mutants is linked to the induction of the lethal syndrome mucosal disease (MD)...
متن کاملGenetic recombination at different points in the Npro-coding region of bovine viral diarrhea viruses and the potentials to change their antigenicities and pathogenicities.
Cytopathogenic (cp) bovine viral diarrhea virus (BVDV) strain KS86-1 cp was isolated from a cow persistently infected with non-cytopathogenic (ncp) BVDV strain KS86-ncp after development of mucosal disease by superinfection with cp BVDV strain Nose. cp BVDV strains 799cp and 839cp were also isolated from independent cattle that developed mucosal disease by superinfection with cp BVDV KS86-1cp. ...
متن کاملRNA recombination in vivo in the absence of viral replication.
To study fundamental aspects of RNA recombination, an in vivo RNA recombination system was established. This system allowed the efficient generation of recombinant cytopathogenic pestiviruses after transfection of synthetic, nonreplicatable, subgenomic transcripts in cells infected with a replicating noncytopathogenic virus. Studies addressing the interplay between RNA recombination and replica...
متن کاملBovine virus diarrhoea virus: an introduction.
In view of the recently established genome organisation of pestiviruses, their classification as members of the togavirus family is no longer tenable. They should rather be provisionally considered as a new genus of the Flaviviridae, irrespective of differences in the nonstructural genes. Like other positive-stranded RNA viruses, pestiviruses are highly variable; apart from point mutations, rec...
متن کاملConstruction of a Minigenome Rescue System for Measles Virus, AIK-c Strain
Background:In the recent decade, the reverse genetics method has been broadly used for rescue of negative-stranded RNA viruses from cDNA or viral minigenomes. This technique has been applied to study different steps in virus replication and virus-host interactions. Reverse genetics could also be implemented for design of new vaccines. The T7 RNA polymerase activity as well as virus (nucleocapsi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 75 14 شماره
صفحات -
تاریخ انتشار 2001